Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Nucl Med ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630948

RESUMO

PURPOSE OF THE REPORT: 18F-PBR06-PET targeting 18-kDa translocator protein can detect abnormal microglial activation (MA) in multiple sclerosis (MS). The objectives of this study are to develop individualized mapping of MA using 18F-PBR06, to determine the effect of disease-modifying treatment (DMT) efficacy on reducing MA, and to determine its clinical, radiological, and serological correlates in MS patients. PATIENTS AND METHODS: Thirty 18F-PBR06-PET scans were performed in 22 MS patients (mean age, 46 ± 13 years; 16 females) and 8 healthy controls (HCs). Logarithmically transformed "glial activity load on PET" scores (calculated as the sum of voxel-by-voxel z-scores ≥4), "lnGALP," were compared between MS and HC and between MS subjects on high-efficacy DMTs (H-DMT, n = 13) and those on no or lower-efficacy treatment, and correlated with clinical measures, serum biomarkers, and cortical thickness. RESULTS: Cortical gray matter (CoGM) and white matter (WM) lnGALP scores were higher in MS versus HC (+33% and +48%, P < 0.001). In H-DMT group, CoGM and WM lnGALP scores were significantly lower than lower-efficacy treatment (P < 0.01) but remained abnormally higher than in HC group (P = 0.006). Within H-DMT patients, CoGM lnGALP scores correlated positively with physical disability, fatigue and serum glial fibrillary acid protein levels (r = 0.65-0.79, all P's < 0.05), and inversely with cortical thickness (r = -0.66, P < 0.05). CONCLUSIONS: High-efficacy DMTs decrease, but do not normalize, CoGM and WM MA in MS patients. Such "residual" MA in CoGM is associated with clinical disability, serum biomarkers, and cortical degeneration. Individualized mapping of translocator protein PET using 18F-PBR06 is clinically feasible and can potentially serve as an imaging biomarker for evaluating "smoldering" inflammation in MS patients.

2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014232

RESUMO

Alzheimer's disease (AD) patients exhibit neuropsychiatric symptoms that extend beyond classical cognitive deficits, suggesting involvement of subcortical areas. Here, we investigated the role of midbrain dopamine (DA) neurons in AD using the amyloid + tau-driven 3xTg-AD mouse model. We found deficits in reward-based operant learning in AD mice, suggesting possible VTA DA neuron dysregulation. Physiological assessment revealed hyperexcitability and disrupted firing in DA neurons caused by reduced activity of small-conductance calcium-activated potassium (SK) channels. RNA sequencing from contents of single patch-clamped DA neurons (Patch-seq) identified up-regulation of the SK channel modulator casein kinase 2 (CK2). Pharmacological inhibition of CK2 restored SK channel activity and normal firing patterns in 3xTg-AD mice. These findings shed light on a complex interplay between neuropsychiatric symptoms and subcortical circuits in AD, paving the way for novel treatment strategies.

3.
Sci Rep ; 13(1): 14424, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660169

RESUMO

Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.


Assuntos
Micorrizas , Pinus , Micorrizas/genética , Genótipo , Fenótipo , Transporte Biológico
4.
Nature ; 621(7977): 105-111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612501

RESUMO

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Assuntos
Aclimatação , Calor Extremo , Florestas , Fotossíntese , Árvores , Clima Tropical , Aclimatação/fisiologia , Austrália , Brasil , Calor Extremo/efeitos adversos , Aquecimento Global , Fotossíntese/fisiologia , Porto Rico , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Árvores/fisiologia , Folhas de Planta/fisiologia , Incerteza
5.
Microbiol Spectr ; : e0147622, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943043

RESUMO

The increasing occurrence of drought is a global challenge that threatens food security through direct impacts to both plants and their interacting soil microorganisms. Plant growth promoting microbes are increasingly being harnessed to improve plant performance under stress. However, the magnitude of microbiome impacts on both structural and physiological plant traits under water limited and water replete conditions are not well-characterized. Using two microbiomes sourced from a ponderosa pine forest and an agricultural field, we performed a greenhouse experiment that used a crossed design to test the individual and combined effects of the water availability and the soil microbiome composition on plant performance. Specifically, we studied the structural and leaf functional traits of maize that are relevant to drought tolerance. We further examined how microbial relationships with plant phenotypes varied under different combinations of microbial composition and water availability. We found that water availability and microbial composition affected plant structural traits. Surprisingly, they did not alter leaf function. Maize grown in the forest-soil microbiome produced larger plants under well-watered and water-limited conditions, compared to an agricultural soil community. Although leaf functional traits were not significantly different between the watering and microbiome treatments, the bacterial composition and abundance explained significant variability in both plant structure and leaf function within individual treatments, especially water-limited plants. Our results suggest that bacteria-plant interactions that promote plant performance under stress depend upon the greater community composition and the abiotic environment. IMPORTANCE Globally, drought is an increasingly common and severe stress that causes significant damage to agricultural and wild plants, thereby threatening food security. Despite growing evidence of the potential benefits of soil microorganisms on plant performance under stress, decoupling the effects of the microbiome composition versus the water availability on plant growth and performance remains a challenge. We used a highly controlled and replicated greenhouse experiment to understand the impacts of microbial community composition and water limitation on corn growth and drought-relevant functions. We found that both factors affected corn growth, and, interestingly, that individual microbial relationships with corn growth and leaf function were unique to specific watering/microbiome treatment combinations. This finding may help explain the inconsistent success of previously identified microbial inocula in improving plant performance in the face of drought, outside controlled environments.

6.
Clin Nucl Med ; 48(7): 643-644, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976711

RESUMO

ABSTRACT: A 69-year-old woman with progressive short-term memory deficits was diagnosed with Alzheimer disease (MMSE 26/30, CDR 0.5) and underwent PET using 18 F-PBR06, a second-generation 18-kDa translocator protein ligand, targeting brain microglia and astrocytes. SUV and voxel-by-voxel binding potential maps (using simplified reference tissue method and a cerebellar pseudo-reference region) were generated. Images showed evidence of increased glial activation in biparietal cortices (including bilateral precuneus and posterior cingulate gyri) and bilateral frontal cortices. After 6 years of clinical follow-up, patient progressed to moderate cognitive impairment (CDR 2.0) and required assistance for activities of daily living.


Assuntos
Doença de Alzheimer , Feminino , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Microglia , Atividades Cotidianas , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
7.
Nat Plants ; 9(2): 238-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747050

RESUMO

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Assuntos
Ecossistema , Sphagnopsida , Sequestro de Carbono , Sphagnopsida/fisiologia , Clima , Cromossomos Sexuais
9.
Diagn Pathol ; 17(1): 32, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216597

RESUMO

BACKGROUND: To improve identification of patients with cutaneous squamous cell carcinoma (SCC) at high risk for metastatic disease, the DecisionDx-SCC assay, a prognostic 40-gene expression profile (40-GEP) test, was developed and validated. The 40-GEP assay utilizes RT-PCR gene expression analysis on primary tumor biopsy tissue to evaluate the expression of 34 signature gene targets and 6 normalization genes. The test provides classifications of low risk (Class 1), moderate risk (Class 2A), and high risk (Class 2B) of metastasis within 3 years of diagnosis. The primary objective of this study was to validate the analytical performance of the 40-gene expression signature. METHODS: The repeatability and reproducibility of the 40-GEP test was evaluated by performance of inter-assay, intra-assay, and inter-operator precision experiments along with monitoring the reliability of sample and reagent stability for class call concordance. The technical performance of clinical orders from September 2020 through July 2021 for the 40-GEP test was assessed. RESULTS: Patient hematoxylin and eosin (H&E) stained slides were reviewed by a board-certified pathologist to assess minimum acceptable tumor content. Class specific controls (Class 1 and Class 2B) were evaluated with Levey-Jennings analysis and demonstrated consistent and reproducible results. Inter-assay, inter-operator and intra-assay concordance were all ≥90%, with short-term and long-term RNA stability also meeting minimum concordance requirements. Of the 2586 orders received, 93.5% remained eligible for testing, with 97.1% of all tested samples demonstrating actionable class call results. CONCLUSION: DecisionDx-SCC demonstrates a high degree of analytical precision, yielding high concordance rates across multiple performance experiments, along with exhibiting robust technical reliability on clinical samples.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Perfilação da Expressão Gênica/métodos , Humanos , Prognóstico , Reprodutibilidade dos Testes , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-35091466

RESUMO

BACKGROUND AND OBJECTIVES: This [18F]fluorodeoxyglucose (FDG) PET study evaluates the accuracy of semiquantitative measurement of putaminal hypermetabolism in identifying anti-leucine-rich, glioma-inactivated-1 (LGI1) protein autoimmune encephalitis (AE). In addition, the extent of brain dysmetabolism, their association with clinical outcomes, and longitudinal metabolic changes after immunotherapy in LGI1-AE are examined. METHODS: FDG-PET scans from 49 age-matched and sex-matched subjects (13 in LGI1-AE group, 15 in non-LGI1-AE group, 11 with Alzheimer disease [AD], and 10 negative controls [NCs]) and follow-up scans from 8 patients with LGI1 AE on a median 6 months after immunotherapy were analyzed. Putaminal standardized uptake value ratios (SUVRs) normalized to global brain (P-SUVRg), thalamus (P/Th), and midbrain (P/Mi) were evaluated for diagnostic accuracy. SUVRg was applied for all other analyses. RESULTS: P-SUVRg, P/Th, and P/Mi were higher in LGI1-AE group than in non-LGI1-AE group, AD group, and NCs (all p < 0.05). P/Mi and P-SUVRg differentiated LGI1-AE group robustly from other groups (areas under the curve 0.84-0.99). Mediotemporal lobe (MTL) SUVRg was increased in both LGI1-AE and non-LGI1-AE groups when compared with NCs (both p < 0.05). SUVRg was decreased in several frontoparietal regions and increased in pallidum, caudate, pons, olfactory, and inferior occipital gyrus in LGI1-AE group when compared with that in NCs (all p < 0.05). In LGI1-AE group, both MTL and putaminal hypermetabolism were reduced after immunotherapy. Normalization of regional cortical dysmetabolism associated with clinical improvement at the 6- and 20-month follow-up. DISCUSSION: Semiquantitative measurement of putaminal hypermetabolism with FDG-PET may be used to distinguish LGI1-AE from other pathologies. Metabolic abnormalities in LGI1-AE extend beyond putamen and MTL into other subcortical and cortical regions. FDG-PET may be used in evaluating disease evolution in LGI1-AE. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that semiquantitative measures of putaminal metabolism on PET can differentiate patients with LGI1-AE from patients without LGI1-AE, patients with AD, or NCs.


Assuntos
Doença de Alzheimer , Córtex Cerebral/metabolismo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central , Encefalite , Peptídeos e Proteínas de Sinalização Intracelular , Mesencéfalo/metabolismo , Putamen/metabolismo , Adolescente , Adulto , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Autoanticorpos , Córtex Cerebral/diagnóstico por imagem , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico por imagem , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/fisiopatologia , Eletroencefalografia , Encefalite/diagnóstico por imagem , Encefalite/imunologia , Encefalite/metabolismo , Encefalite/fisiopatologia , Feminino , Seguimentos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Estudos Retrospectivos , Adulto Jovem
11.
Am J Infect Control ; 49(11): 1432-1434, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455031

RESUMO

K-12 school staff from Indiana, Kentucky and Ohio were asked about their use of disinfectants to mitigate the spread of COVID-19 in schools. Survey participants (n = 1,555) reported frequent use of disinfectants, often using unknown products, and were provided little to no training on safe and effective use. Participant concerns included student involvement in disinfection, inadequate ventilation, surface contact time, and potential health effects.


Assuntos
COVID-19 , Desinfetantes , Desinfecção , Humanos , SARS-CoV-2 , Instituições Acadêmicas
13.
Plant Cell Environ ; 44(9): 2879-2897, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34169547

RESUMO

Tropical forest canopies cycle vast amounts of carbon, yet we still have a limited understanding of how these critical ecosystems will respond to climate warming. We implemented in situ leaf-level + 3°C experimental warming from the understory to the upper canopy of two Puerto Rican tropical tree species, Guarea guidonia and Ocotea sintenisii. After approximately 1 month of continuous warming, we assessed adjustments in photosynthesis, chlorophyll fluorescence, stomatal conductance, leaf traits and foliar respiration. Warming did not alter net photosynthetic temperature response for either species; however, the optimum temperature of Ocotea understory leaf photosynthetic electron transport shifted upward. There was no Ocotea respiratory treatment effect, while Guarea respiratory temperature sensitivity (Q10 ) was down-regulated in heated leaves. The optimum temperatures for photosynthesis (Topt ) decreased 3-5°C from understory to the highest canopy position, perhaps due to upper canopy stomatal conductance limitations. Guarea upper canopy Topt was similar to the mean daytime temperatures, while Ocotea canopy leaves often operated above Topt . With minimal acclimation to warmer temperatures in the upper canopy, further warming could put these forests at risk of reduced CO2 uptake, which could weaken the overall carbon sink strength of this tropical forest.


Assuntos
Aclimatação , Meliaceae/fisiologia , Ocotea/fisiologia , Fotossíntese , Transpiração Vegetal , Termotolerância , Árvores/fisiologia , Aclimatação/fisiologia , Respiração Celular/fisiologia , Temperatura Alta , Meliaceae/metabolismo , Ocotea/metabolismo , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Termotolerância/fisiologia
14.
Clin Nucl Med ; 46(2): 136-137, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208611

RESUMO

ABSTRACT: A 64-year-old man with primary progressive multiple sclerosis (Expanded Disability Status Scale 3.5) underwent PET using 18F-PBR06, a second-generation 18-kDa translocator protein ligand targeting activated brain microglia and astrocytes. Voxel-by-voxel statistical comparison of patient's PET images (acquired 60-90 minutes postinjection) with a healthy control data set was performed to generate a 3-dimensional z-score map of increased radiotracer uptake, which showed widespread increased glial activation in normal-appearing cerebral white matter, white matter lesional and perilesional areas, brainstem and cerebellum. In contrast, patient's 3-T MRI scan showed only a few small white matter brain lesions without contrast enhancement.


Assuntos
Acetanilidas , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Neuroglia/patologia , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32769103

RESUMO

OBJECTIVE: The goal of our study is to assess the role of microglial activation in MS-associated fatigue (MSAF) using [F-18]PBR06-PET. METHODS: Fatigue severity was measured using the Modified Fatigue Impact Scale (MFIS) in 12 subjects with MS (7 relapsing-remitting and 5 secondary progressive) and 10 healthy control participants who underwent [F-18]PBR06-PET. The MFIS provides a total fatigue score as well as physical, cognitive, and psychosocial fatigue subscale scores. Standardized Uptake Value (SUV) 60-90 minute frame PET maps were coregistered to 3T MRI. Voxel-by-voxel analysis using Statistical Parametric Mapping and atlas-based regional analyses were performed. SUV ratios (SUVRs) were global brain normalized. RESULTS: Peak voxel-based level of significance for correlation between total fatigue score and PET uptake was localized to the right substantia nigra (T-score 4.67, p = 0.001). Similarly, SUVRs derived from atlas-based segmentation of the substantia nigra showed significant correlation with MFIS (r = 0.76, p = 0.004). On multiple regression, the right substantia nigra was an independent predictor of total MFIS (p = 0.02) and cognitive MFIS subscale values (p = 0.007), after adjustment for age, disability, and depression. Several additional areas of significant correlations with fatigue scores were identified, including the right parahippocampal gyrus, right precuneus, and juxtacortical white matter (all p < 0.05). There was no correlation between fatigue scores and brain atrophy and lesion load in patients with MS. CONCLUSION: Substantia nigra microglial activation is linked to fatigue in MS. Microglial activation across key brain regions may represent a unifying mechanism for MSAF, and further evaluation of neuroimmunologic basis of MSAF is warranted.


Assuntos
Fadiga , Microglia , Esclerose Múltipla , Substância Negra , Acetanilidas , Adulto , Fadiga/diagnóstico por imagem , Fadiga/etiologia , Fadiga/imunologia , Fadiga/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Microglia/imunologia , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Tomografia por Emissão de Pósitrons , Substância Negra/diagnóstico por imagem , Substância Negra/imunologia
16.
Oncotarget ; 11(32): 3103-3104, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32850014

RESUMO

[This corrects the article DOI: 10.18632/oncotarget.20170.].

17.
Dev Dyn ; 249(5): 666-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32020697

RESUMO

BACKGROUND: Annexin A3 (Anxa3) is a member of the calcium-regulated, cell membrane-binding family of annexin proteins. We previously confirmed that Anxa3 is expressed in the endothelial lineage in vertebrates and that loss of anxa3 in Xenopus laevis leads to embryonic blood vessel defects. However, the biological function of Anxa3 in mammals is completely unknown. In order to investigate Anxa3 vascular function in mammals, we generated an endothelial cell-specific Anxa3 conditional knockout mouse model (Anxa3f/f ;Tie2-Cre). RESULTS: Anxa3f/f ;Tie2-Cre mice are born at Mendelian ratios and display morphologically normal blood vessels during development. However, loss of Anxa3 leads to artery-vein (AV) misalignment characterized by atypical AV crossovers in the postnatal and adult retina. CONCLUSIONS: Anxa3 is not essential for embryonic blood vessel formation but is required for proper parallel AV alignment in the murine retina. AV crossovers associated with Anxa3f/f ;Tie2-Cre mice are similar to AV intersections observed in patients with branch retinal vein occlusion (BRVO), although we did not observe occluded vessels. This new Anxa3 mouse model may provide a basis for understanding AV crossover formation associated with BRVO.


Assuntos
Anexina A3/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Retina/metabolismo , Veias/metabolismo , Animais , Anexina A3/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Masculino , Camundongos , Retina/fisiologia , Veias/fisiologia
18.
Stem Cell Rev Rep ; 15(4): 601-611, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30835047

RESUMO

Despite considerable advances made in understanding of lung cancer biology, there has been meek improvement in lung cancer treatment outcome with 4% to 5% increase in 5-year survival rates in the last four decades. Underlying problem of lung cancer recurrence and poor prognosis is attributed to the presence of cancer stem cells (CSCs) which possess the potential to differentiate, proliferate and trigger chemo-resistance, tumor progression and metastasis, despite initial elimination of the tumor. To address specific targeting of CSCs, we investigated the effects of a small molecule Verrucarin J (VJ) on lung cancer cell lines A549 and H1793. VJ significantly inhibited cell proliferation of both cell lines, with IC50 values of approximately 10 nM for A549 and 20 nM for H1793 respectively after 48 h of treatment. A549 cell line when treated with VJ, induced cell apoptosis with concomitant down regulation of key CSC specific genes- ALDH1, LGR5, OCT4 and CD133 in a dose-dependent manner. To delineate the molecular mechanism by which VJ targets lung cancer cells and CSCs, we determined the effects of VJ on CSC self-renewal pathways Wnt1/ß-catenin and Notch1. Treatment of A549 cell line with VJ inhibited significantly both the signalling pathways, suggesting inhibition of expression of CSC genes by VJ through the inhibition of CSC self-renewal signalling pathways. Taken together, our results suggest that VJ may serve as a potent anticancer drug to target cancer cells and CSCs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/biossíntese , Células-Tronco Neoplásicas/metabolismo , Células A549 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Tricotecenos/farmacologia
19.
New Phytol ; 222(2): 768-784, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597597

RESUMO

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.


Assuntos
Aclimatação/fisiologia , Fotossíntese/fisiologia , Plantas/metabolismo , Temperatura , Aclimatação/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Modelos Lineares , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plantas/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo
20.
PLoS One ; 13(8): e0202519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30118526

RESUMO

A characteristic feature of plant cells is the ability to form callus from parenchyma cells in response to biotic and abiotic stimuli. Tissue culture propagation of recalcitrant plant species and genetic engineering for desired phenotypes typically depends on efficient in vitro callus generation. Callus formation is under genetic regulation, and consequently, a molecular understanding of this process underlies successful generation for propagation materials and/or introduction of genetic elements in experimental or industrial applications. Herein, we identified 11 genetic loci significantly associated with callus formation in Populus trichocarpa using a genome-wide association study (GWAS) approach. Eight of the 11 significant gene associations were consistent across biological replications, exceeding a chromosome-wide-log10 (p) = 4.46 [p = 3.47E-05] Bonferroni-adjusted significance threshold. These eight genes were used as hub genes in a high-resolution co-expression network analysis to gain insight into the genome-wide basis of callus formation. A network of positively and negatively co-expressed genes, including several transcription factors, was identified. As proof-of-principle, a transient protoplast assay confirmed the negative regulation of a Chloroplast Nucleoid DNA-binding-related gene (Potri.018G014800) by the LEC2 transcription factor. Many of the candidate genes and co-expressed genes were 1) linked to cell division and cell cycling in plants and 2) showed homology to tumor and cancer-related genes in humans. The GWAS approach based on a high-resolution marker set, and the ability to manipulate targets genes in vitro, provided a catalog of high-confidence genes linked to callus formation that can serve as an important resource for successful manipulation of model and non-model plant species, and likewise, suggests a robust method of discovering common homologous functions across organisms.


Assuntos
Calo Ósseo/crescimento & desenvolvimento , Populus/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Populus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...